Multi‐jet electrospinning of polystyrene/ polyamide 6 blend: thermal and mechanical properties

نویسندگان

  • Jae Won Yoon
  • Yaewon Park
  • Jooyoun Kim
  • Chung Hee Park
چکیده

Introduction Electrospinning process is broadly used to obtain membrane-like webs with submicron to micron fibers (Li and Xia 2004). Electrospun nanofibers, with its large surface area and multiple pores, can be used to construct unique functional nanostructures for composites, filtration membranes, biomaterials, and breathable textile fabrics (Greiner and Wendorff 2007; Li and Xia 2004; Pham et al. 2006). Generally, an electrospinning setup consists of a high voltage source, container (usually syringe) for polymer solution, syringe pump, capillary nozzle, and grounded collector (Pham et al. 2006). When high electric voltage is applied, the surface tension of polymer solution is overcome by the applied electric field. Charged polymer solution forms into jet, forming a Taylor cone, then gets further stretched. Meanwhile, solvent from the polymer jet continuously evaporates and solidifies to form fiber webs on a collector (Reneker and Chun 1996). Abstract

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polypropylene /Polystyrene in situ nano reinforced blends fiber: Morphology and properties

Polypropylene / polystyrene blends containing montmorillonite (MMT) were prepared using a twin screw extruder followed by fiber spinning. The melt intercalation of PP and PS alloys was carried out in the presence of a compatibilizer such as maleic anhydride-g-polypropylene (MPP). The crystallization morphology, thermal behaviors and mechanical properties of polypropylene/polystyrene (PP/PS) nan...

متن کامل

Polypropylene /Polystyrene in situ nano reinforced blends fiber: Morphology and properties

Polypropylene / polystyrene blends containing montmorillonite (MMT) were prepared using a twin screw extruder followed by fiber spinning. The melt intercalation of PP and PS alloys was carried out in the presence of a compatibilizer such as maleic anhydride-g-polypropylene (MPP). The crystallization morphology, thermal behaviors and mechanical properties of polypropylene/polystyrene (PP/PS) nan...

متن کامل

Flame-Retardant Polyamide 6/Carbon Nanotube Nanofibers: Processing and Characterization

Polyamide 6 (PA6) was melt-blended with an intumescent flame retardant (FR), multi-wall carbon nanotubes (MWNTs), and nanoclay particles to produce multi-component FR-PA6 nanocomposites. FR-PA6 nanofibers were processed from varied nanocomposite formulations via electrospinning. Electrospinnability, morphology, along with combustion and thermal properties of the nanofibers were investigated. Bo...

متن کامل

Impact, thermal and biodegradation properties of high impact polystyrene/corn starch blends processed via melt extrusion

High impact polystyrene (HIPS)/corn starch blends were prepared in presence of glycerol as a plasticizer via melt extrusion process by a twin-screw extruder. The novelty of this work is first, because of the use of pre-gelatinized corn starch as modified one and second, the procedure of making blends by extruder which makes it ease of access and also industrially possible. The blends were then ...

متن کامل

Biodegradable kefiran-chitosan-nanocellulose blend film: Production and physical, barrier, mechanical, thermal, and structural properties

In this study, biodegradable kefiran-chitosan-nanocellulose blend films were developed and their physical, mechanical, barrier, thermal and structural properties determined. Results showed that adding nanocellulose had not any significant effect on the thickness, moisture content and water solubility. Also, water vapor permeability, tensile strength and lightness increased and the elongation at...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017